Rationality in Financial Markets: Evidence From Bank Loan Financing Arrangements and Security Analysts' Earnings Forecasts

Lewis Gaul

February 1, 2007

Question

Do banks rationally use analysts' earnings forecasts to determine loan interest rates?

Simple Example

The Scenario

- Assume General Motors (GM) applies for a line of credit from Bank of America
- Problem: Bank may want information regarding GM's future earnings potential or earnings risk
- Solution: Bank may gather security analysts' earnings forecasts for GM

Simple Example

The Scenario

- Assume General Motors (GM) applies for a line of credit from Bank of America
- Problem: Bank may want information regarding GM's future earnings potential or earnings risk
- Solution: Bank may gather security analysts' earnings forecasts for GM

Simple Example

The Scenario

- Assume General Motors (GM) applies for a line of credit from Bank of America
- Problem: Bank may want information regarding GM's future earnings potential or earnings risk
- Solution: Bank may gather security analysts' earnings forecasts for GM

Simple Example Cont...

However, analysts' earnings forecasts are:

- Not perfect
- Possibly exaggerated

Simple Example Cont...

However, analysts' earnings forecasts are:

- Not perfect
- Possibly exaggerated

Simple Example Cont...

Rephrase the Question

Do banks make systematic mistakes accounting for both the exaggerations and the lack of precision in analysts' earnings forecasts?

Contribution

Three Contributions

- Examination as to whether banks rationally use analysts' forecasts to determine loan interest rates
- Examine analysts impact on ex-ante cost of capital.
 Previous Literature uses ex-post equity returns.(Rajan and Savares (1997), Dechow, Hutton, and Sloan (1999),
 Bradshaw, Skinner, and Sloan (2006), Michaely and Womack (1999))
- Use System GMM estimator to estimate exogenous influence of analysts' forecasts for bank loan interest rate determination

Contribution

Three Contributions

- Examination as to whether banks rationally use analysts' forecasts to determine loan interest rates
- Examine analysts impact on ex-ante cost of capital.
 Previous Literature uses ex-post equity returns.(Rajan and Savares (1997), Dechow, Hutton, and Sloan (1999),
 Bradshaw, Skinner, and Sloan (2006), Michaely and Womack (1999))
- Use System GMM estimator to estimate exogenous influence of analysts' forecasts for bank loan interest rate determination

Contribution

Three Contributions

- Examination as to whether banks rationally use analysts' forecasts to determine loan interest rates
- Examine analysts impact on ex-ante cost of capital.
 Previous Literature uses ex-post equity returns.(Rajan and Savares (1997), Dechow, Hutton, and Sloan (1999),
 Bradshaw, Skinner, and Sloan (2006), Michaely and Womack (1999))
- Use System GMM estimator to estimate exogenous influence of analysts' forecasts for bank loan interest rate determination

Simple Model

The Agents

- Bank
- Large publicly traded firm
- Security Analysts

Simple Model

The Agents

- Bank
- Large publicly traded firm
- Security Analysts

Simple Model

The Agents

- Bank
- Large publicly traded firm
- Security Analysts

Analysts' Consensus Earnings Forecasts-A Noisy Signal

- $S^a = \theta + \eta$
- $\theta \sim N\left(\mu_{\theta}, \sigma_{\theta}^{2}\right)$
- $\bullet \ \eta \sim \textit{N}\left(\mu_{\eta}, \sigma_{\eta}^{\textit{2}}\right)$

Conditional Mean and Variance: Return Per Dollar of Assets

•
$$\hat{\theta} = \mu_{\theta} + \frac{\sigma_{\theta}^2}{\sigma_{\theta}^2 + \phi \sigma_{\eta}^2} \left(S^a - \mu_{\theta} - \kappa \mu_{\eta} \right)$$
 where $\kappa < 1, \phi < 1$

$$\bullet \hat{\sigma}_{\theta}^2 = \frac{\phi \sigma_{\theta}^2 \sigma_{\eta}^2}{\sigma_{\theta}^2 + \phi \sigma_{\eta}^2}$$

Banks Problem: Maximize Profits

$$R^* \in \operatorname{arg\,max}_R \pi = BR + E \left[I\theta - BR | S^a, \theta < \frac{BR}{I}
ight] - (1 +
ho) B$$

Solution to Banks Problem

•
$$\frac{\partial \pi}{\partial R} = 1 - \Pr\left[\theta < \frac{BR}{I}\right]$$

$$\bullet$$
 $\pi = BR + E \left| I\theta - BR | S^a, \theta < \frac{BR}{I} \right| - (1 + \rho) B = 0$

Solution to Banks Problem

•
$$\frac{\partial \pi}{\partial R} = 1 - \Pr\left[\theta < \frac{BR}{I}\right]$$

•
$$\pi = BR + E\left[I\theta - BR|S^a, \theta < \frac{BR}{I}\right] - (1+\rho)B = 0$$

Correctly Accounting For The Forecast Bias

$$\bullet \ \frac{\partial R^*}{\partial S^a} = -\frac{\sigma_\theta^2}{\sigma_\theta^2 + \phi \sigma_\eta^2} \frac{E\left[(I\theta - BR^*) \frac{\left(\theta - \hat{\theta}\right)}{\hat{\sigma}_\theta^2} | S^a, \theta < \frac{BR^*}{I} \right]}{\frac{\partial \pi}{\partial R^*}} < 0$$

$$\bullet \ \, \frac{\partial R^*}{\partial \mu_{\eta}} = \frac{\kappa \sigma_{\theta}^2}{\sigma_{\theta}^2 + \phi \sigma_{\eta}^2} \frac{E\left[(I\theta - BR^*) \frac{(\theta - \hat{\theta})}{\hat{\sigma}_{\theta}^2} | S^a, \theta < \frac{BR^*}{I} \right]}{\frac{\partial \pi}{\partial R^*}} > 0$$

$$\bullet$$
 $\frac{\partial R^*}{\partial S^a} + \frac{\partial R^*}{\partial \mu_{\eta}} = 0$ for $\kappa = 1$

Correctly Accounting For The Forecast Bias

$$\bullet \ \frac{\partial R^*}{\partial S^a} = -\frac{\sigma_\theta^2}{\sigma_\theta^2 + \phi \sigma_\eta^2} \frac{E\left[(I\theta - BR^*) \frac{\left(\theta - \hat{\theta}\right)}{\hat{\sigma}_\theta^2} | S^a, \theta < \frac{BR^*}{I} \right]}{\frac{\partial \pi}{\partial R^*}} < 0$$

$$\bullet \ \, \frac{\partial R^*}{\partial \mu_\eta} = \frac{\kappa \sigma_\theta^2}{\sigma_\theta^2 + \phi \sigma_\eta^2} \frac{E\left[(\mathit{I}\theta - \mathit{B}R^*)\frac{(\theta - \hat{\theta})}{\hat{\sigma}_\theta^2}|S^a, \theta < \frac{\mathit{B}R^*}{\mathit{I}}\right]}{\frac{\partial \pi}{\partial R^*}} > 0$$

•
$$\frac{\partial R^*}{\partial S^a} + \frac{\partial R^*}{\partial \mu_{\eta}} = 0$$
 for $\kappa = 1$

Correctly Accounting For The Forecast Bias

$$\bullet \ \frac{\partial R^*}{\partial S^a} = -\frac{\sigma_\theta^2}{\sigma_\theta^2 + \phi \sigma_\eta^2} \frac{E\left[(I\theta - BR^*) \frac{(\theta - \hat{\theta})}{\hat{\sigma}_\theta^2} | S^a, \theta < \frac{BR^*}{I} \right]}{\frac{\partial \pi}{\partial R^*}} < 0$$

$$\bullet \ \, \frac{\partial R^*}{\partial \mu_\eta} = \frac{\kappa \sigma_\theta^2}{\sigma_\theta^2 + \phi \sigma_\eta^2} \frac{E\left[(I\theta - BR^*) \frac{(\theta - \hat{\theta})}{\hat{\sigma}_\theta^2} | S^a, \theta < \frac{BR^*}{I} \right]}{\frac{\partial \pi}{\partial R^*}} > 0$$

$$ullet$$
 $rac{\partial R^*}{\partial \mathcal{S}^a} + rac{\partial R^*}{\partial \mu_\eta} = 0 ext{ for } \kappa = 1$

Correctly Accounting For The Lack of Precision

$$\phi = \frac{\sigma_{\theta}^2 \frac{\partial R^*}{\partial \mu_{\theta}}}{\sigma_{\eta}^2 \frac{\partial R^*}{\partial S^a}} = 1$$

Empirical Estimation

Data

- DEALSCAN
- I/B/E/S
- COMPLISTAT

Empirical Estimation

Data

- DEALSCAN
- I/B/E/S
- COMPUSTAT

Empirical Estimation

Data

- DEALSCAN
- I/B/E/S
- COMPUSTAT

Econometric Model

$$INTR_{i,t} = \alpha_0 + \beta_1 RQ_{i,t} + \beta_2 MFE_{i,t-1} + \beta_3 MPE_{i,t-1} + \gamma Z + \omega_i + \tau_t + \varepsilon_{i,t}$$

Comparative Static Estimates

- $\frac{\partial R^*}{\partial S^a} \Rightarrow \beta_1$
- $\frac{\partial R^*}{\partial \mu_{\eta}} \Rightarrow \beta_2$
- $\frac{\partial R^*}{\partial \mu_{\theta}} \Rightarrow \beta_3$

Estimation Methodology

- GMM System Estimator
- Arellano and Bover (1995), Blundell and Bond (1998)

Results

Long Term Earnings Forecast	-0.0895***
	(0.0371)
Mean of Past Forecast Errors	2.4477***
	(1.0637)
Stdev of Past Forecast Errors	0.0086
	(1.1722)
Mean of Past Earnings	-1.8310***
	(0.4975)
Number of Firms	1890
Number of Observations	5777
P-Value Hansen Test of Overidentifying Restrictions	0.259
Test of Second Order Serial Correlation P-Value	0.271

Results

Current Fiscal Year Earnings Forecast	-1.5724***
	(0.6718)
Mean of Past Forecast Errors	2.0572***
	(1.0700)
Stdev of Past Forecast Errors	3.1131***
	(1.3111)
Mean of Past Earnings	-0.9170***
	(0.4544)
Number of Firms	2233
Number of Observations	6826
P-Value Hansen Test of Overidentifying Restrictions	0.262
Test of Second Order Serial Correlation P-Value	0.404

Econometric Model

$$\begin{aligned} \textit{INTR}_{i,t} &= \\ \alpha_0 + \beta_1 \textit{RQ}_{i,t} + \beta_2 \textit{MFE}_{i,t-1} + \beta_3 \textit{MPE}_{i,t-1} + \gamma \textit{Z} + \omega_i + \tau_t + \varepsilon_{i,t} \end{aligned}$$

Econometric Tests

•
$$\frac{\partial R^*}{\partial S^a} + \frac{\partial R^*}{\partial \mu_{\eta}} \Rightarrow \beta_1 + \beta_2 = 0.48 \Rightarrow \kappa \Rightarrow 1.30$$

Econometric Model

$$INTR_{i,t} = \alpha_0 + \beta_1 RQ_{i,t} + \beta_2 MFE_{i,t-1} + \beta_3 MPE_{i,t-1} + \gamma Z + \omega_i + \tau_t + \varepsilon_{i,t}$$

Does Earnings Forecast Proxy for the Banks Private Information

•
$$RQ_{i,t} = RQ_{i,t}^b + v_{i,t}$$

•
$$COV\left[\omega_{i} + \varepsilon_{i,t} + \beta_{1}v_{i,t}, \Delta RQ_{i,t-s}^{b} + \Delta v_{i,t-s}\right] \neq 0$$

•
$$COV\left[\Delta arepsilon_{i,t} + eta_1 \Delta v_{i,t}, \, RQ^b_{i,t-z} + v_{i,t-z}\right]
eq 0$$

Econometric Model

$$INTR_{i,t} = \alpha_0 + \beta_1 RQ_{i,t} + \beta_2 MFE_{i,t-1} + \beta_3 MPE_{i,t-1} + \gamma Z + \omega_i + \tau_t + \varepsilon_{i,t}$$

Does Earnings Forecast Proxy for the Banks Private Information

- $RQ_{i,t} = RQ_{i,t}^b + v_{i,t}$
- $COV\left[\omega_{i} + \varepsilon_{i,t} + \beta_{1}v_{i,t}, \Delta RQ_{i,t-s}^{b} + \Delta v_{i,t-s}\right] \neq 0$
- $COV\left[\Delta \varepsilon_{i,t} + \beta_1 \Delta v_{i,t}, RQ_{i,t-z}^b + v_{i,t-z}\right] \neq 0$

Econometric Model

$$INTR_{i,t} = \alpha_0 + \beta_1 RQ_{i,t} + \beta_2 MFE_{i,t-1} + \beta_3 MPE_{i,t-1} + \gamma Z + \omega_i + \tau_t + \varepsilon_{i,t}$$

Does Earnings Forecast Proxy for the Banks Private Information

- $RQ_{i,t} = RQ_{i,t}^b + v_{i,t}$
- $COV\left[\omega_i + \varepsilon_{i,t} + \beta_1 v_{i,t}, \Delta RQ_{i,t-s}^b + \Delta v_{i,t-s}\right] \neq 0$
- $COV\left[\Delta\varepsilon_{i,t} + \beta_1\Delta\upsilon_{i,t}, RQ_{i,t-z}^b + \upsilon_{i,t-z}\right] \neq 0$

Conclusions

- Banks account for forecast bias and precision
 - Further evidence is needed regarding extent of rationality in financial markets

Conclusions

- Banks account for forecast bias and precision
- Further evidence is needed regarding extent of rationality in financial markets